
1Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

1

Using Elizabeth

An introduction to Chatbots
and Natural Language Processing

Peter Millican, July 2018

Hertford College, University of Oxford

2

Obtaining the Software

 The Elizabeth software can be downloaded from the
Elizabeth home page at:
www.philocomp.net/ai/elizabeth
 The system is available either as a ‘zip’ file or as a

‘self-extracting zip’ file. Whichever you choose,
unpack the files onto the machine you are using, e.g.
into the folder C:\Elizabeth on your own machine, or
C:\Temp\Elizabeth if you do not have permission to
create a new folder.

 For links to other chatbot systems (as well as to
Elizabeth), see www.simonlaven.com

3

Running the Software

 The main system file is called:
Elizabeth.exe

 To run it, simply identify this file within Windows Explorer,
and double-click.

 Make sure that the help documentation file:

Elizabeth.pdf

is in that same directory (the system also uses “My Scripts”
and “Illustrative Scripts” subdirectories).

 Use the first item in Elizabeth’s Help menu to view the
contents of the help file, and start reading – everything you
need to know about the system is explained there! (You can
also use the Help menu to load various illustrative scripts.)

4

Recent Versions of Elizabeth

 The latest version of Elizabeth on the website is 2.20.
This has been adapted (in 2018) to remove dependence
on the old Windows Help system (unavailable on
Windows 10), so the Help documentation is now in the
PDF file Elizabeth.pdf. Section references in this
presentation (e.g. “§1.4”) are to that PDF document.

 The previous main version, 2.07, provided significant
improvements in power (thus enabling a Turing machine
simulator and original ELIZA clone), e.g.:
 Memory indirection to allow creation of arrays;
 Keyword sets can be either sequential or randomised;
 Support for arbitrary recursion and text splitting/combining;
 Trace enhancement with multiple options.

5
Playing Around

 Elizabeth’s behaviour is based on a ‘Script’ file.

 Initially, Elizabeth should start up with a Script which
shows the ‘Welcome’ message:

HELLO, I'M ELIZABETH. WHAT WOULD
YOU LIKE TO TALK ABOUT?

If this doesn’t happen for any reason, try locating and
loading the script file Elizabeth.txt using ‘Load script
file and start’ from the File menu.

 To familiarise yourself with Elizabeth, just play around
a bit, typing input sentences, clicking on ‘Enter’, and
seeing what happens. Note that the conversation is
recorded in the ‘Dialogue’ tab.

6

The Illustrative Conversation
 Take a look at the section ‘Illustrative Script and

Conversation’, §1.4 in Elizabeth.pdf. Try typing
inputs similar in style to what are shown in the part
headed ‘The Conversation’ (§1.4.2), e.g. type in
sentences containing words or phrases such as:
 ‘mum’ or ‘dad’
 ‘I think …’
 ‘… is younger than …’
 ‘I like …ing’

 While doing this, look at the ‘Trace’ tab (just right of
the ‘Dialogue’ tab): this shows how your input is being
processed to produce the system’s replies.

1 2

3 4

5 6

2Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

7

The Script Editor

 From Elizabeth’s File menu, select ‘Transfer script
into Script Editor’ – this will start up the Script
Editor with the current script file loaded in.

 Now make a change to the ‘Welcome’ message
(appears after ‘W’ in the second line of the Script);
then from the Editor’s File menu, select ‘Restart
Elizabeth after saving’ – this will save your change,
and restart Elizabeth using this edited script file
(with its new ‘Welcome’ message).

 Note that the two File menus give various options
for switching between Elizabeth and the Editor.

8

The First Illustrative Script

 Try to work out how the Script that you see within
the Editor is determining Elizabeth’s conversational
behaviour – if any of it seems puzzling, refer to
‘Illustrative Script and Conversation’ (§1.4).

 Try playing around with the Script (like you did
already with the ‘Welcome’ message), and see what
effect this has on Elizabeth’s conversation.

 Carry on doing this as we now explore Elizabeth’s
data tables as shown in the various system ‘tabs’.
Most of what you see in the tables comes directly
from the Script file.

9

Simple Message Types

 The ‘Welcome/Quit’ tab shows Welcome and Quitting
messages – one of each is selected respectively to start
the conversation, and to end it (when the user selects
‘Quit’ from the File menu).

 The ‘Void/No-key’ tab shows Void Input messages –
one of these is selected in response to any ‘null’ input –
and No-Keyword messages – for use when no
‘keyword’ is identified in the input.

 If there are more than one of any of these kinds of
messages, then by default (changeable through the
Options menu) the selection is random, except that the
same message won’t be chosen twice in succession.

10
The Main Processing Cycle

Receive user’s input
as the ‘active text’

Input Transformations
Apply any input transforms

Keyword Transformations
Search for a keyword; if one is found,
replace the active text with a response

from the corresponding set; if not,
replace it with a no-keyword response

Output Transformations
Apply any output transforms

Output the new
‘active text’

11

Input/Output Transformations

 Input transformations are applied to the initial input;
their main use is to standardise words that you want to
be treated similarly, e.g.

I mum => mother

if you want ‘mum’ to be changed to ‘mother’.

 Output transformations are applied to the final output;
often their main use is to change first-person to second-
person and vice-versa, e.g.

O i am => YOU ARE

 Make sure you capitalise these as illustrated above (this
will be explained a bit later).

12

Keyword Transformations

 Keywords and responses are grouped into sets, so order
them in your script file accordingly (set 1 keys, then set
1 responses, then set 2 keys … etc). Generally it’s best
to capitalise keys and responses.

 Unlike Input and Output Transformations, only one
Keyword Transformation is applied each time.

 Note how pattern matching and substitution are used
within the keywords and responses in the Illustrative
Script, and their effect as you ‘play’.

 See the help sections on ‘The Input/Keyword/Output/
Final Transformation Process’ (§2.3) and ‘Pattern
Matching’ (§3.1) if you want more details.

7 8

9 10

11 12

3Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

13

Simple Keywords and Responses

 The following script commands create a simple
keyword/response set with two keywords and three
responses:

 When ‘mother’ or ‘father’ is found in the active
text, one of the responses will be chosen (randomly,
but avoiding immediate repetition if possible).

K MOTHER
K FATHER
R TELL ME MORE ABOUT YOUR FAMILY.
R DO YOU HAVE ANY BROTHERS OR SISTERS?
R ARE YOU THE YOUNGEST IN YOUR FAMILY?

14

Keywords with Substitution

 The following script commands create a keyword/
response set which pattern-matches the keyword
against the active text and then makes appropriate
substitutions in the response:

 Any pattern of the form [p…] is a phrase wildcard,
matching any sequence of words (which can contain
only letters, hyphens or apostrophes). [p1] is
treated as a separate pattern from [p2].

K [p1] IS YOUNGER THAN [p2]
R SO [p2] IS OLDER THAN [p1]

15

Pattern Matching

 Any of these patterns can be used in combination (see the
help file section ‘Pattern Matching’ for the complete list):

[w…] any single complete word (or part-word)
[t…] any single complete term (or part-term) – a term,

unlike a word, may contain digits as well as letters
[l…] any single letter (i.e. any character that can occur

in a word, including hyphen/apostophe)
[p…] a phrase – any sequence of complete words
[X…] any text string which contains only complete ‘items’

(so it cannot contain only half a word or number).
[b…] like [X…], but will only match text in which all

brackets – ‘(’, ‘)’, ‘<’, and ‘>’, correctly pair up.
[;] any punctuation mark
[] matches beginning or end of active text

16

Empty Patterns

 [let1] and [let2] each matches one letter, so the
following might generate the dialogue: ‘My degree is
a BSc. IS GETTING A BSC DEGREE HARD?’

 Suppose you want to do this not only for ‘BSc’ and
‘BCL’ etc, but also ‘BA’. To do this, allow the
second pattern to match nothing by adding ‘?’:

K DEGREE [X] B[let1][let2]
R IS GETTING A B[let1][let2] DEGREE HARD?

K DEGREE [X] B[let1][let2?]
R IS GETTING A B[let1][let2?] DEGREE HARD?

17

Matching the Ends of the Text

 The term [] is used to match the beginning, or the end, of
the active text. This enables you to treat words differently if
they are the first, or last, word of the user’s input. We’ll see
a ‘first word test’ a bit later (with memorisation of ‘my’
phrases); here’s an example of a ‘last word test’:
O you [] => ME

O you => I

 These two output transformations will have the effect of
changing ‘you’ into ‘ME’ if it is the very last word of the
active text, but into ‘I’ otherwise – this makes sense because
when ‘you’ appears at the end it’s normally the object of the
sentence rather than the subject (e.g. ‘She saw you’).

18

Capitalisation and Transformations

 We have seen that different types of capitalisation are
typically used for the various transformations:
I mum => mother

K FATHER
R TELL ME MORE ABOUT YOUR FAMILY.
O i am => YOU ARE

 This all fits with the following rule:

A lower-case pattern can only match with a lower-case
text, whereas an upper-case pattern can match with
either a lower-case or an upper-case text.

13 14

15 16

17 18

4Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

19

 Initially, the input text is converted to lower case. Putting
all your input transformations in lower case ensures that
the text stays lower case at this stage.

 If a keyword is found, the text usually gets replaced with a
response which is already in the right form for output, so
you don’t want to apply output transformations to it. This
is ensured by putting the responses in upper case, and the
left-hand side of the output transformations in lower case.

 If an output transformation is applied, e.g. to change ‘my’
to ‘YOUR’, then capitalisation on the right-hand side
ensures that no further transformations will be applied to
text that’s already been converted.

 See §5.1 for more detail, and worked examples.

20

Modularising Your Script

 As your script grows, it can be made easier to manage
by dividing it into separate files. See the ‘Turbo Eliza’
example under the Help menu (Basic script commands).

 You will need one ‘master’ file, which can then ‘pull
in’ sub-files using an include directive, e.g.:

#INCLUDE My Scripts\output.txt

 This enables you to use e.g. the same set of output
transformations within several scripts.

 Sub-files can contain further include directives, so you
can organise your script into sub-sections, etc.

21

Dynamic Commands

 Script commands can be applied dynamically, and
can be ‘triggered’ by almost any kind of process
(see the help file on ‘Dynamic Script Processing’
for details and a variety of examples).

 The most important use of this is for memorisation
of phrases, which can then be recalled later, e.g.:

K MY NAME IS [phrase]
& {M [phrase]}
R NICE TO MEET YOU [phrase]!
N WHAT DO YOU LIKE DOING, [M]?

22

Memorising and Recalling Phrases

 Note from the previous example:
 ‘& {…}’ is used to specify an action, in this case one

that is triggered by the matching of a keyword and the
selection of a corresponding response;

 ‘{M [phrase]}’ memorises whatever text was
matched against [phrase];

 [M] can then be used to recall the latest remembered
text, within any kind of transformation or response;

 Here a no-keyword response is created, which when
invoked will make use of the latest memory ([M]).

 [M-1], [M-2] etc. can be used to recall earlier
memories (the last but 1, last but 2, etc.).

23
Returning to a Previous Topic

 The most common use of memorisation in the original
ELIZA program is to deal with the situation where no
keyword is found, to give an impression of continuity
by returning to a previous topic.

 A good way of recognising likely topics is to look for
user input starting with ‘my’, e.g. ‘my dog is ill’. Note
the use of [] to match the beginning of the text:

K [] MY [phrase]
& {M [phrase]}
R YOUR [phrase]?
N DOES THAT HAVE ANYTHING TO DO WITH THE
FACT THAT YOUR [M]?

24
Index Codes

 Every transformation, response, memory etc. that Elizabeth
accepts is assigned an index code. Unless you specify an
index code yourself, these are automatically created for you,
starting with ‘001’, ‘002’, ‘003’ etc.

 You can see what index codes have been assigned by
inspecting the relevant tables.

 Index codes enable you to pick out specific transformations/
responses/memories for dynamic modification, recall etc.

 We’ll be using index codes only for memories – enabling us
to handle many memories, and not just the latest one. (See
help on ‘Control of Scripts using Command Index Codes’
and ‘Command Syntax Reference Guide’ for other uses.)

19 20

21 22

23 24

5Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

25

Memorising Pronoun References
 One simple use of index-coded memories is to keep track of

what’s been referred to by a recent output, so that pronouns (‘it’,
‘she’ etc.) can be dealt with appropriately. The following might
yield ‘I watch football. WHAT DO YOU THINK OF
ARSENAL? They’re good. I LIKE THEIR STYLE …’: here
the input transformations replace ‘They’re’ in the last input with
‘ARSENAL ARE’, enabling an appropriate response to be found.

I THEY’RE => THEY ARE
I THEY => [Mthey]
K FOOTBALL
R WHAT DO YOU THINK OF ARSENAL?

& {Mthey ARSENAL}
K ARSENAL
R I LIKE THEIR STYLE, BUT NOT THEIR RESULTS!

26

Using Multiple Memories
 This script will keep track of some of your favourites,

tell you what they are, and then go on repeating them.

W WHAT ARE YOUR FAVOURITE GAME, TEAM AND PLAYER?
K GAME [X?] IS [phrase]

& {Mgame [phrase]}
K TEAM [X?] IS [phrase]

& {Mteam [phrase]}
K PLAYER [X?] IS [phrase]

& {Mplayer [phrase]}
R THANK YOU - SAY "OK" WHEN YOU'VE FINISHED

K OK
R YOUR FAVOURITE GAME IS [Mgame], TEAM IS [Mteam],

AND PLAYER IS [Mplayer]
& {I [word] => OK}

N PLEASE CARRY ON TELLING ME YOUR FAVOURITES

27

 Note from the previous example:
 ‘K GAME [X?] IS [phrase]’ matches any text containing the

word ‘GAME’ and then at some later point ‘IS’ followed by a
phrase (recall that a ‘phrase’ here just means one or more
words in sequence);

 ‘& {Mgame [phrase]}’ then memorises the relevant phrase
under the index code ‘game’;

 ‘R YOUR FAVOURITE GAME IS [Mgame], TEAM IS
[Mteam], AND PLAYER IS [Mplayer]’ outputs the three
memories, but this response cannot be used until something
has been memorised under each of the three index codes (you
can check this by inputting ‘OK’);

 ‘& {I [word] => OK}’ creates an input transformation which
changes all words to ‘OK’ – this simply ensures that from then
on, any input will be treated as though it was just ‘OK OK …’.

28

Timing of Dynamic Commands (i)
 In the last example, instead of using ‘OK’ as a prompt,

you might try outputting the three memories, as soon as
they exist, using a catch-all output transformation …

W WHAT ARE YOUR FAVOURITE GAME, TEAM AND PLAYER?
K GAME [X?] IS [phrase]

& {Mgame [phrase]}
K TEAM [X?] IS [phrase]

& {Mteam [phrase]}
K PLAYER [X?] IS [phrase]

& {Mplayer [phrase]}
R THANK YOU - DO GO ON ...

O [X] => YOUR FAVOURITE GAME IS [Mgame], TEAM IS
[Mteam], AND PLAYER IS [Mplayer]

N PLEASE CARRY ON TELLING ME YOUR FAVOURITES

29

Timing of Dynamic Commands (ii)
 You might now expect that as soon as the three memories

have been saved, the catch-all output transformation
([X] => YOUR FAVOURITE …) will automatically become
operative no matter what the active text is, won’t it?

 But doing this won’t work until you type in another input
… if you look at the trace tab just after you’ve typed in your
three favourites, you should see why.

 The problem is that each new memory isn’t saved until after
the corresponding response processing has all been done.
But the action will work immediately if you insert a ‘!’, e.g.:

K GAME [X?] IS [phrase]
& {!Mgame [phrase]}

30

Using Null Memories to Keep Track
 Recall that responses (etc.) containing memory

references like ‘[Mthey]’ cannot be used until
those references succeed (i.e. until something has
been memorised under the relevant code).

 However the ‘something’ saved can be the null
string (i.e. nothing!) – so saving a null memory
provides a way of ‘keeping track’, and controlling
which responses (etc.) are used and which are not.

 The advantage of using a null memory is that this
can be inserted into any response without affecting
what gets output (because, after all, it’s the null
string: it contains no characters at all).

25 26

27 28

29 30

6Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

31

Changing Mood
 The following script fragment makes Elizabeth get

progressively more angry at the user’s swearing (starting off
in the ‘calm’ state, then progressing to ‘cross’ and ‘enough’;
note how ‘M\’ is used to delete all memories, and that more
than one command can be put inside the curly brackets.

K DAMN
K BLOODY
R [Mcalm] I'D RATHER YOU DIDN'T SWEAR, PLEASE

& {M\
Mcross}

R [Mcross] LOOK, JUST STOP SWEARING WILL YOU!
& {M\

Menough}
R [Menough] THAT'S IT! I'VE HAD ENOUGH - GO AWAY!

& {M\
O [X] => JUST GO AWAY}

Mcalm

32
Conditional Commands

 Using null memories to keep track of the ‘state’ of the
conversation is the simplest kind of conditional processing.

 You can also define conditional commands explicitly, using
angle brackets to specify the relevant condition:
<[Mcalm]>: R DON’T SWEAR, PLEASE

makes this keyword response available for use only if the
memory [Mcalm] is defined

<[Mtemper]==CALM>: R DON’T SWEAR, PLEASE

makes this keyword response available for use only if the
memory [Mtemper] has the value ‘CALM’ (note that ‘!=’
instead of ‘==’ would check inequality rather than equality)

 For more on this, see the help sections on ‘Giving Direction to a
Conversation’ and ‘Defining and Using Conditional Commands’.

33
More on Dynamic Commands

 Almost any script command can be used dynamically, and
virtually all of them act identically in either case (an
exception is when you add a keyword that already exists).

 However for dynamic uses, you will need some commands
that you are very unlikely to use directly in a script – for
example the commands that delete transformations or
memories etc. (as we’ve already used above).

 To test what effect a particular command will have when
triggered dynamically, you can type it into the input box,
and then press F1 instead of Enter.

 For full details of all available commands, see ‘Command
Syntax Reference Guide’ (§6.1 and its subsections).

34

Examples of Deletion Commands
 See the ‘Command Syntax Reference Guide’ (§6.1) for full

details of deletion commands, and for the treatment of index
codes and keyword sets as mentioned on the next slide.

V\ DON'T YOU WANT TO TALK?

 deletes this specific void input response
N\
 deletes all no-keyword responses

I\ dad => father
 deletes this specific input transformation

I\ dad
 deletes the first input transformation whose left-hand side is ‘dad’

K\ MOTHER
 deletes the keyword ‘MOTHER’

K\ or K/\
 delete all keywords; ‘K/\’ deletes all the keyword sets too.

35
Index Codes and Keyword Sets

 One of the above examples deletes the ‘first’ input
transformation of a particular kind – when you use any such
command, the ordering is alphabetical by index code.

 Almost any script command can be assigned an index code when
it is created, and this will determine the order in which they are
applied and searched for, e.g.:

I$first one => two
 defines the input transformation ‘one => two’ with index code

‘$first’ – ‘$’ comes alphabetically before ‘0’, so this transform-
ation will be done even before the transformation coded ‘001’.
See the help section on ‘Alphabets’ for details of ordering.

 Keyword/response sets have index codes, and the keywords/
responses also have their own index codes. Within keyword and
response commands, ‘@’ can be used to refer to the current
keyword/response set (i.e. usually, the latest to be modified).

36

Commands Within Commands

 Dynamic script commands can be ‘nested’ like this
(note how indentation is used to show the structure):

 When the phrase ‘my sister’ is identified in the input,
this adds a new keyword ‘MOTHER’ together with the
response ‘HOW WELL …’. But the keyword is also
defined in such a way that when it is recognised and the
response given, this will trigger another action, creating
a no-keyword response ‘TELL ME MORE …’ which
might then be invoked later in the conversation.

I my sister => my sister
& {K MOTHER

& {N TELL ME MORE ABOUT YOUR MOTHER}
R HOW WELL DO YOUR MOTHER AND SISTER GET ON?}

31 32

33 34

35 36

7Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

37

Iteration, Cycling, and Recursion

 Having now covered most of Elizabeth’s specific
commands, it is time to look at the higher-level
structures that it provides for handling repeated
operations and flow of control.

 Three important concepts here are iteration,
cycling, and (the most significant) recursion.

 Within Elizabeth, iteration and cycling apply only
to input and output transformations (the latter
include also ‘final’ transformations, which are
explained later); recursion can apply to any kind of
transformation, and is usually most powerful and
flexible when used with keyword/response pairs.

38
The Concept of Iteration

 The Oxford Dictionary of Computing has this to say
about iteration:

[Iteration is] the repetition of a numerical or non-
numerical process where the results from one or
more stages are used to form the input to the next.
Generally the recycling of the process continues until
some preset bound is achieved, or the process result
is constantly repeated.

 Within Elizabeth, iteration of input/output/final
transformations is automatically halted when they
cease to have any effect on the active text (i.e. where
‘the process result is constantly repeated’).

39

Enabling Iteration within Elizabeth

 To enable iteration of input transformations, open
the Control menu dialog box and click on the
‘Permit unlimited iteration’ radio button under the
‘Input Transformation Control’ heading.

 Now create a script containing only the single input
transformation:

 I TICK => TICK TOCK

and type as input: ‘TICK’. There will be a delay
while this is processed, and the easiest way to see
the output is to look at the ‘Dialogue’ tab.

40

Controlling Loops – the Match Limit

 When iteration is enabled for input transformations, this
means that every input transformation will be applied to the
active text repeatedly until either:

 the transformation stops having any effect (either because it
ceases to apply to the active text, or makes no difference);

 iteration is terminated for some reason.

 Iteration will always be terminated eventually, to prevent the
system ‘hanging’. The ultimate barrier here is a match
algorithm limit, which keeps count of how many times the
matching algorithm has been called, and prevents further
iteration after a certain limit (5,000 by default).

 This limiting value is set through the Control menu dialog.

41

The Automatic Undo Facility

 An alternative method of controlling iteration is an
automatic undo facility, which works on the basis:
 that any transformation which iterates 10 or more

times is ‘non-terminating’;

 that any non-terminating transformation should be
applied once only.

 To enable the automatic undo facility, un-check the
‘Permit Recursion, Text Splitting and …’ box in the
Control menu dialog. This is necessary because (to
avoid control flow conflicts) the automatic undo is
not available when recursion is enabled.

42

The Concept of Cycling

 The Oxford Dictionary of Computing provides this
definition of the relevant sense of the word ‘cycle’:

[A cycle is] any set of operations that is repeated
regularly and in the same sequence. The operations
may be subject to variations on each repetition.

 Within Elizabeth, cycling of input/output/final
transformations is subject to the same sorts of limits
that apply to iteration; so for example cycling is
automatically halted when the cycle of operations
ceases to have any effect on the active text.

37 38

39 40

41 42

8Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

43

Iteration and Cycling

 To appreciate the difference between iteration and
cycling, first create a script containing only the two
input transformations:
 I TICK => TOCK
 I TOCK => TICK TACK

and type as input: ‘TICK’.

 With iteration enabled but not cycling, the output will
be ‘TICK TACK’, each transformation having been
applied once. Note that the left-hand side of each does
not match its right-hand side, so neither of them can be
repeatedly applied to its own output.

44

Enabling Cycling within Elizabeth

 To enable cycling of input transformations, open
the Control menu dialog box and click on the
‘Permit unlimited cycling’ radio button under the
‘Input Transformation Cycling’ heading.

 If you do this and then again give the input ‘TICK’
to the transformations:
 I TICK => TOCK
 I TOCK => TICK TACK

you will find that the output is much longer, like the
output you got earlier with unlimited iteration.

45

Controlling Cycling

 Exactly as with iteration, there are two different ways
of preventing infinite loops arising from cycling:

 Further cycling will always be prevented eventually,
once the match algorithm limit is exceeded.

 If recursion is disabled, it is possible to select the
automatic undo facility, which works on the basis:
 that any set of transformations which cycles 10 or more times

(this number is adjustable) is ‘non-terminating’;

 that any non-terminating set of transformations should be
applied once only, so further applications should be ‘undone’.

 As in the case of iteration, the automatic undo facility for
cycling is accessible through the Control menu dialog.

46
Recursion

 Recursion is a hugely important concept in
Computing generally, and especially in Artificial
Intelligence. The Oxford Dictionary of Computing
provides defines recursion as:

The process of defining or expressing a function,
procedure, language construct, or the solution to a
problem in terms of itself, so producing a recursive
function, a recursive procedure etc.

 Within Elizabeth, the ‘problem’ is the generation of
appropriate output, and a recursive solution is one in
which the overall solution is created by ‘feeding
back’ partial solutions into the system.

47

Recursion in Elizabeth

 Any text in curly braces on the right-hand side of an input/
output/final transformation rule, or in a keyword response,
will be recursed – fed back into Elizabeth as if it was input:

K [word1] [phrase1]
R {[word1]} {[phrase1]}

K 1
R ONE

K 2
R TWO

Input of:
1 2 2 1 2

will yield output of
ONE TWO TWO ONE TWO

 Here the first word in each input is separated from the
remainder, and both are recursed in turn. Each single word
fails to match with the first keyword, and so ‘falls through’
to be caught by one of the other keywords and replaced.

48

Recursion and Final Transformations

 In the previous example, the input is split into
individual words, and each word is then processed
separately – through the full input/keyword/output
sequence – before the results of this individual
processing are recombined in the output.

 Final transformations are a special kind of output
transformation, differing from the standard kind in
being applied after recombining has taken place.

 To explore recursion further, with more complex
examples, see ‘Recursion and Text Splitting’
(§3.2) and ‘The Power of Recursion’ (§3.3).

43 44

45 46

47 48

9Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

49

APPENDIX 1: Syntactic Analysis

 The ELIZA method of simple pattern-matching and
pre-formed responses may sometimes be able to
generate the illusion of ‘intelligent’ language
processing, and even in some cases (e.g. a computer
help system) provide the basis for a useful tool.

 However to get anywhere near genuine NLP
(natural language processing), Elizabeth needs to do
more than pattern-match – it must be responsive to
the structure of sentences, and react not just
according to the literal word strings they contain,
but how these words are put together – their syntax.

50

A Testbed: Simple Transformations

 A good testbed for Elizabeth’s potential for
handling syntactic structure is the attempt to
generate simple grammatical transformations.

 A transformation is a change in structure which
alters the ‘surface’ form of the sentence (so the
words are different, or in a different order), but
without significantly altering its ‘propositional
content’ (i.e. what ‘facts’ are in question; what the
sentence ‘says’ about what or whom).

 Transformations played a major and controversial
role in the rise of Chomskyan linguistics, but their
value as a useful testbed is independent of all that.

51 Our Starting Point:
Active Declarative Sentences

 We start from straightforward active declarative
sentences, such as:
 John chases the cat

 The white rabbits bit a black dog

 You like her

 Declarative simply means that these sentences
purport to state (‘declare’) facts – they are not
questions or commands, for example.

 Here we shall stick to very simple word categories
and grammatical constructs.

52 Some Types of Transformation (1):
Active to Passive

 Most types of transformation are easier to grasp by
example than explanation:

 Active to Passive
 ‘John chases the cat’ becomes

‘The cat is chased by John’

 ‘The white rabbits bit a black dog’ becomes

‘A black dog was bitten by the white rabbits’

 ‘You like her’ becomes

‘She is liked by you’

53

(2): Yes/No Questions

 These transform the sentence into a question with a
simple yes/no answer:
 ‘John chases the cat’ becomes

‘Does John chase the cat?’

 ‘You like her’ becomes

‘Do you like her?’

 They can also be applied to passive sentences,
though here they’re a bit more complicated:
 ‘A black dog was bitten by the white rabbits’ becomes

‘Was a black dog bitten by the white rabbits?’

54

(3): Tag Questions

 A Tag Question is appended to the end of a sentence, to ask
for confirmation or to give emphasis to what was said:

 ‘John chases the cat’ becomes

‘John chases the cat, doesn’t he?’

 ‘The white rabbits bit a black dog’ becomes

‘The white rabbits bit a black dog, didn’t they?’

 ‘You like her’ becomes

‘You like her, don’t you?’

 These provide an excellent test case, because a tag question
must agree with the sentence in number (singular or plural),
person (first person, second, third), gender (masculine,
feminine, neuter), and tense (past, present, future).

49 50

51 52

53 54

10Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

55

Phrase Structure Grammar (1)

 A common method of syntactic analysis is to break
down a sentence into hierarchical components using
a phrase structure grammar. (Note that here we
shall be looking at only a tiny and highly simplified
fragment of English, so don’t take the rules used
here to be absolutely correct or complete!)

 All of the basic sentences we shall be examining
consist of a noun phrase followed by a verb phrase.
Crudely, the noun phrase specifies the subject of the
sentence, e.g. ‘John’, ‘the white rabbits’, ‘you’. The
verb phrase specifies what the subject does (or did,
or will do), e.g. ‘chases the cat’, ‘like her’.

56

Phrase Structure Grammar (2)

 The rule that a sentence can be made up of a noun
phrase followed by a verb phrase is represented as:

S NP VP

 In the examples we’ve seen, a noun phrase can be
made up in three ways: (a) a single noun or
pronoun (e.g. ‘John’, ‘it’); (b) a determiner (or
‘article’) followed by a noun (e.g. ‘the rabbits’, ‘a
dog’); (c) a determiner followed by an adjective
followed by a noun (e.g. ‘the white rabbits’). So:

NP N
NP D N
NP D ADJ N

57

Phrase Structure Grammar (3)

 Finally, a verb phrase typically consists of a verb followed by
a noun phrase, e.g. ‘chases …’, ‘bit …’, where the ‘…’ is
some noun phrase. So we have:

VP V NP

(We assume here that the verb is a transitive verb: one that has an
object as well as a subject. Where a verb is intransitive, the verb
phrase can consist of just the verb, e.g. ‘sleeps’, while many verbs
can be either transitive or intransitive, e.g. ‘eats’.)

 As we shall see, a set of rules like this can provide a powerful
technique for analysing a sentence into its structural
components, and Elizabeth can help here.

 See the Elizabeth help on ‘Implementing Grammatical Rules’
for more discussion and examples of these techniques.

58

Phrase Structure Rules in Elizabeth

 The phrase structure rules above can be reversed and then
translated into Elizabeth input transformations suitable for
analysing a sentence into its structural constituents:
NP D N
I (d:[b1]) (n:[b2]) => (np:(D:[b1]) (N:[b2]))

VP V NP
I (v:[b1]) (np:[b2]) => (vp:(V:[b1]) (NP:[b2]))

S NP VP
I (np:[b1]) (vp:[b2]) => (s: (NP:[b1]) (VP:[b2]))

 Note here that a ‘[b…]’ pattern can match anything at all,
as long as it contains matching brackets. This ensures that
the sentence structure is recorded by the ‘nested’ brackets,
and that the processing respects this structure.

59

 Obviously we also need to specify the categories (noun,
verb etc) for the various words. We might end up with a set
of input transformations like this:

I the => (d:THE)

I dog => (n:DOG)

I cat => (n:CAT)

I chases => (v:CHASES)

I (d:[b1]) (n:[b2]) => (np:(D:[b1]) (N:[b2]))

I (v:[b1]) (np:[b2]) => (vp:(V:[b1]) (NP:[b2]))

I (np:[b1]) (vp:[b2]) => (s: (NP:[b1]) (VP:[b2]))

 If we then input the sentence:
the dog chases the cat

the input transformations will convert this into:
(s: (NP:(D:THE)(N:DOG)) (VP:(V:CHASES) (NP:(D:THE)(N:CAT))))

60

 Having used the input transformations to analyse the sentence into
its constituent structure, we can then apply keyword
transformations to alter that structure, e.g. from active to passive:

K (s:(NP:[b1]) (VP:[b2]))
R (s:(VP:[b2] passive) (NP:[b1]))

 Then output transformations can be used to decompose the
sentence structure back into its parts:

O (s:(VP:[b1] passive) (NP:[b2])) => (vp:[b1] passive)(np:[b2])
O (vp:(V:[b1]) (NP:[b2]) passive) => (np:[b2])(v:[b1] passive)
O (np:(D:[b1]) (N:[b2])) => (d:[b1]) (n:[b2])
O (v:CHASES passive) => IS CHASED BY
O (d:[b1]) => [b1]
O (n:[b1]) => [b1]

 If we then input the sentence:
the dog chases the cat

the output will have been ‘translated’ into the passive form:
the cat is chased by the dog

55 56

57 58

59 60

11Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

61

APPENDIX 2: Propositional Logic

 A proposition is a statement that some determinate
state of affairs is (or is not) the case, e.g. ‘Grass is
not white’, ‘Politicians are always liars’, ‘1+1=23’,
or ‘Pigs can fly’. Questions and exclamations are
not propositions, and it is convenient to restrict our
attention to statements that avoid any ambiguity.

 Propositional logic deals with reasoning whose logic
is analysable entirely in terms of whole propositions.
This does not include reasoning that depends on
propositions’ internal structure, e.g. ‘Socrates is a
man. All men are mortal. Therefore Socrates is
mortal.’ (This argument requires Predicate Logic.)

62

Binary Propositional Connectives

 A binary propositional connective joins two proposi-
tions together to make a third (complex) proposition.

 Such connectives in English include ‘and’, ‘because’,
‘but’, ‘if’, ‘implies’, ‘nevertheless’, ‘only if’, ‘or’,
‘suggests that’, ‘unless’.

 ‘Snow is white’ and ‘the moon is cheese’ are atomic
propositions (i.e. they’re not themselves made up of
other propositions). Using the connectives, we get:
 Snow is white and the moon is cheese
 Snow is white because the moon is cheese
 Snow is white but the moon is cheese
 Snow is white if the moon is cheese (etc.)

63

Truth-Functionality
 A connective # is truth-functional if knowing the

truth or falsity of P and Q always gives you enough
information to know the truth of falsity of (P # Q).

 ‘And’, ‘or’ are usually treated truth-functionally:
(P and Q) (P or Q)

P true Q true true true
P true Q false false true
P false Q true false true
P false Q false false false

 But real English isn’t so simple, e.g. ‘He hit me and
I swore at him’ gives a different impression from ‘I
swore at him and he hit me’.

64

Translating English Connectives

 Testing arguments using propositional logic requires
that all connectives be interpreted truth-functionally:
 Translate ‘but’, ‘nevertheless’, ‘because’ as and.

 Translate ‘unless’ as or.

 Translate ‘if P then Q’, ‘Q if P’, ‘only if Q then P’, ‘P
only if Q’ as implies, interpreted like this:

(P implies Q)
P true Q true true
P true Q false false
P false Q true true
P false Q false true

65

Negating a Proposition

 The negation (or contradictory) of a proposition is
that proposition which denies exactly what the first
asserts (and therefore asserts exactly what the first
denies). So if P is true, its negation – not(P) – must
be false, and if P is false, not(P) must be true, e.g.:

P: Snow is white

not(P): Snow is not white (not ‘Snow is green’)

Q: All cows eat grass

not(Q): Some cow (or cows) doesn’t eat grass

(not ‘No cows eat grass’)

 Thus not is a unary truth-functional connective.

66

Consistency and Inconsistency

 A set of propositions is consistent if it is logically
possible for all of them to be true together, e.g.
{ The moon is inhabited by spiders ,

Some man can jump over 100 metres ,

Examinations are tremendous fun }

 A set of propositions is inconsistent if it is not logic-
ally possible for them all to be true together, e.g.
{ No cow eats aubergines ,

Daisy is a cow ,

Daisy eats aubergines }

61 62

63 64

65 66

12Elizabeth 2.20, Peter Millican, July 2018

Using the Elizabeth Conversation Program

67

Arguments and Validity

 An argument, as the man in Monty Python’s Argument
Sketch says, is ‘a connected series of statements
intended to establish a proposition’. The ‘statements’
[propositions] from which it starts are called its
premisses, and the proposition which it is intended to
establish is called its conclusion.

 An argument is valid if the truth of the premisses
guarantees the truth of the conclusion – that is, if the
premisses are true, the conclusion must be true too.

 This is the same as saying that an argument is valid if
the set consisting of the premisses, together with the
negation of the conclusion, is an inconsistent set.

68

The Resolution Rule

 Suppose these premisses are known to be true:
P or Q not(P) or R

P must of course be either true or false. If P is false,
then Q must be true (from the first premiss), but if P is
true, then R must be true (from the second premiss).
So from these two premisses we can conclude:

Q or R

 This is an application of the rule of resolution. In
general, this rule lets us move from:

[A] or P or [B] [C] or not(P) or [D]

to [A] or [B] or [C] or [D]

69

Clausal Form

 A literal is either an atomic proposition – a simple
proposition we can represent as ‘P’ – or else the
negation of an atomic proposition, e.g. ‘not(P)’.

 Resolution works on clauses: formulae consisting
of sequences of literals joined by ‘or’. We can
simplify the representation of such formulae, e.g.
by using ‘<P>’ (with angle brackets) to mean
‘not(P)’, and using commas instead of ‘or’s.

 Treated like this, ‘not(P) or Q or R’
becomes: ‘<P>, Q, R’

70

Testing Validity by Resolution Refutation

 To test an argument for validity using resolution:

1. Formalise the propositions of the argument as atomic
propositions linked by truth-functional connectives;

2. Take the (formalised) premisses of the argument
together with the negation of the conclusion – we
aim to test whether this set of propositions is
inconsistent (if it is inconsistent, then the argument is
valid);

3. Convert all of the propositions in the set into clausal
form (we’ll see how to do this soon);

4. Apply the resolution rule again and again until either
you can resolve P against not(P) to get ‘NIL’ (i.e. a
contradiction – the argument’s valid) or you give up.

71

Converting Formulae into Clausal Form

 Remove all ‘implies’ using the equivalence:
A implies B (not(A) or B)

 If at any stage a ‘double negation’ is produced,
replace it with an unnegated formula:

not(not(A)) A

 ‘Push the nots inwards’ using the identities:
not(A or B) (not(A) and not(B))
not(A and B) (not(A) or not(B))

 If any ‘and’ is left within the scope of an ‘or’,
remove it using the identity:

A or (B and C) (A or B) and (A or C)

72

 If any ‘and’ remains, it should lie between
independent clauses which we can list separately, so
we finish up with a straightforward list of such
clauses, each consisting purely of ‘ored’ literals.

 The help file section ‘Implementing Propositional
Logic’ provides an argument to illustrate all this:

G implies (O and B) not(G) or O

not(G) or B

B implies T not(B) or T

(O and T) implies not(E) not(O) or not(T) or not(E)

E E

therefore not(G) G (negated conclusion)

67 68

69 70

71 72

